RNI No.- MPHIN/2013/60638, ISSN 2320-8767, E- ISSN 2394-3793, Scientific Journal Impact Factor (SJIF)- 8.054, July to September 2025, E-Journal, Vol. I, Issue LI (51), ISO 9001:2015 - E2024049304 (QMS)

Integrating Traditional Wisdom and Modern Strategies for Flood Disaster Management: An Indian Knowledge System Perspective

Koshlendra Singh*

*Ph.D. Scholar (Geography) Jiwaji University, Gwalior (M.P.) INDIA

Abstract: Flood disasters are among the most frequent and devastating natural calamities in India. Traditional flood management practices rooted in India's indigenous knowledge systems (IKS) have provided sustainable solutions for centuries, reflecting harmony between human settlements and nature. This paper aims to integrate traditional wisdom with modern strategies for effective flood disaster management. Drawing examples from across India—including the embankment systems of Bihar, tank irrigation in Tamil Nadu, and the floodplain management of Assam—this paper highlights the necessity of blending local knowledge with scientific innovation for resilient communities. The study employs a qualitative methodology involving literature reviews, case studies, and spatial analysis through GIS data interpretation. Results indicate that traditional approaches can significantly complement modern techniques when systematically institutionalized within India's disaster management framework.

Keywords: Flood Disaster, Traditional Knowledge, Indian Knowledge System, Flood Management, Resilience, GIS, Disaster Mitigation.

Introduction - Floods are among the most frequent and destructive natural disasters globally, and India, due to its diverse climatic and physiographic conditions, faces recurrent flood situations across different river basins. The country's dependence on monsoon rainfall, coupled with increasing anthropogenic interventions, such as deforestation, unplanned urbanization, and encroachment of floodplains, exacerbates flood vulnerability. In recent years, the frequency and intensity of floods have intensified due to climate change, causing not only economic losses but also large-scale displacement and environmental degradation.

Historically, Indian civilization developed around rivers such as the Ganga, Yamuna, Brahmaputra, and Chambal. Ancient communities had developed a deep understanding of river behavior, water flow, and seasonal variations. This understanding evolved into indigenous practices for flood management and water conservation, including the construction of tanks, ponds, stepwells, embankments, and sacred groves. Such systems were not merely engineering feats but were deeply embedded in the cultural and ecological ethos of society.

However, with the advent of modern engineering-based flood control measures—like large dams, levees, and canal systems—traditional practices gradually lost prominence. Despite technological advancements, floods continue to

cause severe damage, suggesting the need to revisit and integrate traditional wisdom with modern science. This integration aligns with the objectives of the Indian Knowledge System (IKS), which emphasizes sustainability, harmony with nature, and community participation in managing natural resources.

Objectives of the Study:

- To identify traditional flood management practices in India
- 2. To analyze their relevance and applicability in modern flood management systems.
- 3. To integrate traditional wisdom with modern technologies for sustainable flood disaster mitigation.
- 4. To suggest a framework for flood management based on the Indian Knowledge System perspective.

Research Methodology: The study follows a qualitative and descriptive research design. The methodology includes:

- 1. Secondary data analysis from government reports, journals, and books related to flood management.
- 2. Case study approach focusing on flood-prone areas such as Bihar, Assam, Rajasthan.
- 3. Comparative analysis between traditional and modern flood management approaches.
- 4. Synthesis of field-based experiences and indigenous practices documented through previous research.

Review of Literature

RNI No.- MPHIN/2013/60638, ISSN 2320-8767, E- ISSN 2394-3793, Scientific Journal Impact Factor (SJIF)- 8.054, July to September 2025, E-Journal, Vol. I, Issue LI (51), ISO 9001:2015 - E2024049304 (QMS)

Several scholars have emphasized the value of indigenous knowledge in disaster management. Gupta and Deshpande (2019) explored traditional flood control methods in Eastern India, while Singh (2021) highlighted the role of tank irrigation in South India as a sustainable water management system. Reports from the National Disaster Management Authority (NDMA, 2020) suggest integrating community-based knowledge into state flood control policies. These studies underline that indigenous practices—though localized—are adaptable to modern frameworks when supported by scientific validation and participatory governance.

Discussion and Analysis

Traditional Flood Management Practices in India: India has a rich legacy of traditional flood management systems, varying across regions. In Assam, the Mishing tribes construct raised bamboo houses called 'Chang Ghar' to avoid flood damage. In Bihar, earthen embankments ('Aahar-Pyne' systems) were historically used for both irrigation and flood control. In Tamil Nadu, ancient tanks (Eri system) managed floodwater and groundwater recharge. Similarly, Rajasthan's Johads and Bunds helped store rainwater, reducing flash floods. These community-based, eco-friendly systems were not merely engineering feats but socio-cultural institutions embedded within local governance. Modern Flood Management Strategies: Modern flood management in India is largely technology-driven, focusing on early warning systems, river embankments, floodplain zoning, and GIS-based mapping. The Central Water Commission (CWC) monitors flood forecasting through telemetry networks. The NDMA and IMD collaborate for real-time alerts. Structural measures such as dams, reservoirs, and embankments are complemented by nonstructural approaches like land-use regulation, watershed management, and community awareness programs.

Case studies

1. Johads in Rajasthan: Johads are traditional earthen check dams found in the Alwar and Jaipur districts of Rajasthan. These small, crescent-shaped water harvesting structures collect rainwater and recharge groundwater, reducing the risk of floods and droughts. Revival efforts led by communities, such as those initiated by the Tarun Bharat Sangh, have demonstrated the long-term sustainability of these systems. Their integration into modern watershed management programs presents a replicable model for flood mitigation in semi-arid regions.

Fig.1- Johads structure of Rajasthan

2. Ahar Pyne system of Bihar: The Ahar Pyne system of Bihar is a traditional, nature-based water management and irrigation system developed in South Bihar, particularly prevalent in the Gaya district. It dates back around 5,000 years to the Magadh dynasty. This system acts as a diversion-cum-storage network where water is drawn from rivers during monsoon floods and stored in Ahars. Pynes form a network of interlinked channels distributing this stored water to agricultural fields, mainly used for irrigation of paddy and other crops in both kharif and rabi seasons. The system helps in flood control by channeling excess water, supports groundwater recharge, sustains soils with nutrient-rich water, and maintains irrigation even during dry periods.

Fig.2- Ahar Pyne system of Bihar

3. Chang Ghar houses of Assam: Chang Ghar houses are traditional stilt houses built by the Missing people in Assam, Northeast India, especially along the Brahmaputra River. These houses are elevated on bamboo stilts to protect against flooding, a frequent problem in the region due to monsoons and river overflow. The height of the stilts is determined by the highest recorded flood levels. Chang Ghars have porous walls made from grass mats and are designed to allow floodwaters to flow underneath, keeping the living area dry.

Fig.3-Chang Ghar house of Assam
Integrating Traditional and Modern Approaches:
Integration of traditional knowledge with modern strategies offers a hybrid model of resilience. For instance, floodplain zoning can be enhanced using indigenous knowledge of water flow patterns. GIS and Remote Sensing can digitize ancient water systems for conservation and management. Community participation—an essential part of traditional systems—should be institutionalized in modern planning.

RNI No.- MPHIN/2013/60638, ISSN 2320-8767, E- ISSN 2394-3793, Scientific Journal Impact Factor (SJIF)- 8.054, July to September 2025, E-Journal, Vol. I, Issue LI (51), ISO 9001:2015 - E2024049304 (QMS)

Table 1: Comparison of Traditional and Modern Flood Management Systems

Aspect	Traditional	Modern Approach
	Approach	
Knowledge	Community &	Scientific &
Base	Indigenous	Technological
	Knowledge	Knowledge
Management	Local and	National and Global
Scale	Regional	
Focus	Adaptation and	Control and
	Coexistence	Prevention
Sustainability	High due to	Variable due to
	ecological	infrastructure
	harmony	dependence
Participation	Community-	Government-
	centered	centered

Conclusion and Suggestions: The integration of traditional and modern flood management systems offers a path toward sustainable and resilient communities in India. The Indian Knowledge System offers valuable insights into sustainable water and flood management, emphasizing harmony with nature. Indigenous systems emphasize coexistence with natural water regimes, while modern systems rely on technology and infrastructure. A balanced

approach that values both is essential. The government should promote documentation of indigenous flood control methods, strengthen community institutions, and develop hybrid frameworks combining GIS-based analysis with local ecological knowledge.

References:-

- Gupta, R. & Deshpande, S. (2019). Indigenous Water Management Practices in Eastern India. Journal of Environmental Studies.
- 2. Singh, P. (2021). Tank Irrigation and Flood Mitigation in South India. Indian Geographical Review.
- National Disaster Management Authority (NDMA). (2020). Guidelines on Flood Management. Government of India.
- 4. Central Water Commission (CWC). (2021). Flood Forecasting Network of India. Ministry of Jal Shakti.
- 5. UNESCO. (2018). Traditional Knowledge for Water Resource Management in Asia.
- 6. Tarun Bharat Sangh. (2019). Community Water Management through Johads: A Case from Rajasthan.
- 7. Pant, N. (2004). *Institutional Analysis of Ahars and Pynes in South Bihar*.
- 8. "India's Chang Ghar traditional homes are resilient to floods." *DW*, 2025.

